4D
Within the essay and zine, “4D”, an argument is made that architectural objects are inherently linked to time. And beyond this by rationalizing objects through an eternalist view of time we can combine and utilize Object Oriented Ontologie’s
(Harmon)
aesthetic theory as well as Materialist (DeLanda) language surounding flows.
New Materialism views architecture as the calcification of flows of “matter-energy”, within this view everything is broken down to matter and the ways in which it circulates and calcifies.
Object-Oriented Ontology (OOO, read as “triple O”)
alternatively views everything as objects, things that “cannot be entirely reduced either to components of which it is made or to the effects that it has on other things” (Harman). OOO expands upon the structures and natures of these objects and gives us a framework for accessing their aesthetic effects.
4D served as the philisophical framework for what would become “Once There Was and Once there Wasn’t”. Drawing from Ideas explored in previous projects such as the nature of an architectural object and their relationship with time. 4D expands upon and distills the ideas into something much more tangible and usable.
To access the full text either click “Next Page” to start at the first page or click on a section below to begin reading from there.
CONTENTS
Introduction
A Working Definition of Architecture
Function
Aesthetics
Environment
The Relationships Between Function, Aesthetics, and Environment
Object Oriented Ontology
New Materialism
Function
Aesthetics
Environment
Post Humanism and Flat Ontologies
Time and Objects
Matters of Scale
Urban and Natural
Mass and Void
Structure and Skin
Philosophy Conclusions
Particular Applications Within the Field
Particular Critiques
Donald Judd: Untitled Works in Mill Aluminum
Richard Serra: Dileneator
John Chamberlain: Mr. Press, and Jackson Pollock: Number 1a
Mark Foster Gage Architects: Helsinki Guggenheim, and Kengo Kuma: GC
Prostho Museum
Peter Zumthor: Therme Vals
Wash Monolith
Untitled #4
White on White #6-8
Conclusions and Routes Forward